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In this paper, the effects of the number and arrangement of radial fins on laminar natural co-
nvection between horizontal circular and square cylinders has been investigated numerically
with the lattice Boltzmann method. The Rayleigh number is varied from Ra = 103 − 106),
the number of fins (N = 2 − 8) and the Prandtl number (Pr = 0.7). The local Nusselt
number profiles over the outer and inner cylinders and the average Nusselt number over the
top, bottom and side walls of the outer cold square cylinder are obtained. The temperature
and streamline contours are also depicted to investigate the heat and fluid flow behavior
inside the computational domain.
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Nomenclature

c is the lattice speed; f , f̃ – particle distribution and post-collision particle distribution function,
respectively; g g̃ – temperature distribution and post-collision temperature distribution function,
respectively; gneq – non-equilibrium parts of temperature distribution function; f eq, geq – equ-
ilibrium density distribution function; eα – discrete velocity; Nuloc, Nuave – local and avera-
ged Nusselt number, respectively; Pr, Ra – Prandtl (ν/α) and Rayleigh number, respectively;
T – temperature; u – flow velocity, u(u, v); u, v – x- and y-velocity component, respecti-
vely; uf – fluid velocity near wall; uw – velocity of solid wall; ubf – imaginary velocity for
interpolations; Xb – physical boundary; Xf , Xw – fluid and wall node, respectively; t – time [s].
Greek symbols: α – thermal diffusivity [m2s−1]; δt – lattice time step; χ – weight factor;

∆ – fraction of the intersected link; υ – kinematic viscosity of the fluid [m2s−1]; ρ – density of
fluid [kgm−3]; τυ, τs – relaxation time for flow and for temperature, respectively; ωα – constant
factors.
Subscripts: b – boundary; f – fluid; ave – average; loc – local; w – wall.

1. Introduction

The phenomenon of natural convection in enclosures has been a subject of research over the
years. Among them, convective heat transfer in horizontal annuli has attracted many attentions
in engineering sciences due to its wide applications such as in solar collector-receivers and under-
ground electric transmission cables. Kuhen and Goldstein (1976, 1980) presented experimental
and numerical studies of steady-state natural convection heat transfer in horizontal concentric
annuli in which the effects of Rayleigh and Prandtl numbers and the aspect ratio were parametri-
cally explored, and the correlating equations were proposed as well. Larson et al. (1978) carried



828 I. Jafari et al.

out experimental study of a temperature field around a heated horizontal cylindrical body in an
isothermal rectangular enclosure. Kim et al. (2008) and Lee and Lee (1981) studied the effect of
circular cylinder positions on heat transfer in the range of the Rayleigh number by means of a
finite volume method. They found that the existence of local peaks of the Nusselt number along
the surfaces of the cylinder and the enclosure is determined by the gap and the thermal plume
governed by conduction and the convection. Natural convection between a square outer cylinder
and a heated elliptic inner cylinder was investigated by Bararnia et al. (2011). Their results
showed that streamlines, isotherms, the number, size and formation of the cells strongly depend
on the Rayleigh number and the position of the inner cylinder. Shi et al. (2006) investigated
natural convection heat transfer in a horizontal concentric annulus bounded by two stationary
cylinders with different temperatures by means of the finite difference based lattice BGK model
for thermal flows. They showed the capability and accuracy of the method for different range of
the Rayleigh number. The main objective of the present work is to investigate the effect of the
number and arrangement of radial fins along with the Rayleigh number on the heat and fluid
flow pattern between a hot inner circular and a cold outer square cylinder.

2. Numerical procedure

Standard (D2Q9) LBM method is used for both flow and temperature in the present work, see
Mohamad (2007).

2.1. Curved boundary treatment

2.1.1. Treatment of curved boundary for velocity

For treating velocity and temperature fields with curved boundaries, the method proposed
by Yan and Zu (2008) has been used. Figure 1 shows an arbitrary curved wall separating a solid
region from the fluid.

Fig. 1. Layout of lattice nodes and the curved wall boundary

The fraction of the intersected link in the fluid region ∆ is defined as

∆ =
|xf − xw|

|xf − xb|
(2.1)

The post-collision distribution function f̃α(xb, t) is defined as

f̃α(xb, t) = (1− χ)f̃α(xf , t) + χf
∗

α(xb, t) + 2ωαρ
3

c2
eαuw (2.2)
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where

f∗α(xb, t) = f
eq
α (xf , t) + ωαρ(xf , t)

3

c2
eα(ubf − uf ) (2.3)

and

ubf =





uff = u(xff , t) if 0 ¬ ∆ <
1

2
1

2∆
(2∆ − 3)uf +

3

2∆
uw if

1

2
¬ ∆ < 1

χ =





2∆− 1

τυ − 2
if 0 ¬ ∆ <

1

2
2∆− 1

τυ −
1

2

if
1

2
¬ ∆ < 1

(2.4)

In the above, eα ≡ −eα, xff = xf + eαδt, uf ≡ u(xf , t) is the fluid velocity near the wall,
uw ≡ u(xw, t) is the velocity of the solid wall and ubf is an imaginary velocity for interpolations,
and χ is the weight factor that depends on it. Substituting Eq. (2.3) into Eq. (2.2), gives

f̃α(xb, t) = f̃α(xf , t)− χ[f̃α(xf , t)− f̃
eq
α (xf , t)] + ωαρ(xf , t)

3

c2
eα[χ(ubf − uf )− 2uw] (2.5)

2.1.2. Treatment curved boundary for temperature

Following the work of Yan and Zu (2008), the non-equilibrium parts of temperature distri-
bution function can be defined as

gneqα (x, t) = gα(x, t)− g̃α(x, t) (2.6)

Thus, the post-collision state function of temperature leads to

g̃α(x, t) = g
eq
α (x, t) +

(
1−
1

τs

)
gneqα (x, t) (2.7)

Obviously, to calculate the value of g̃α(xb, t), both g
eq
α (xb, t) and g

neq
α (xb, t) are needed. In Eq.

(2.7), the equilibrium part is defined as

geqα (xb, t) = ωαT
∗

b

(
1 +
3

c2
eαu
∗

b

)
(2.8)

where T ∗b is defined as

T ∗b =

{
Tb1 if ∆  0.75

Tb1 + (∆− 1)Tb2 if ∆ < 0.75
(2.9)

where

Tb1 =
1

∆
[Tw + (∆− 1)Tf ] Tb2 =

1

1 +∆
[2Tw + (∆− 1)Tff ] (2.10)

and u∗b is defined as function of

u∗b =

{
ub1 if ∆  0.75

ub1 + (∆ − 1)ub2 if ∆ < 0.75
(2.11)

where

ub1 =
1

∆
[uw + (∆− 1)uf ] ub2 =

1

1 +∆
[2uw + (∆ − 1)uff ] (2.12)

The non-equilibrium part in Eq. (2.6) is defined as

gneqα (xb, t) = ∆g
neq
α (xf , t) + (1−∆)g

neq
α (xff , t) (2.13)
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2.2. Grid study and validation of the present lattice Boltzmann code

To test and assess grid independency of the solution scheme, numerical experiments have
been performed for grid sizes of 201 × 201, 251 × 251, 301 × 301 and 351 × 351. Various mesh
combinations were examined for the case of Ra = 106 at N = 8. The present code was tested
for grid independence by calculating the average Nusselt number on the outer cold walls. As
seen in Table 1, a grid mesh of 301 × 301 is adequate to describe the heat transfer processes
correctly. The convergence criterion for the termination of all computations is

max
grid

∣∣∣
√
(u2 + v2)n+1 −

√
(u2 + v2)n

∣∣∣ ¬ 10−6 max
grid
|T n+1 − T n| ¬ 10−6 (2.14)

Table 1. Results of the average Nusselt number on the outer cold walls for the grid test for
Ra = 106, N = 8

Mesh Nuave

201 × 201 2.4886

251 × 251 2.5135

301 × 301 2.5053

351 × 351 2.5053

Table 2 and Fig. 2 illustrate the comparison between the calculated average Nusselt numbers
of Kim et al. (2008) and the present results. These comparisons illustrate an excellent agreement
between the present calculations and the previous works.

Table 2. Comparison of the average Nusselt number along the hot surface obtained by the
present solution with the previous work by Kim et al. (2008) for different Rayleigh numbers at
Pr = 0.7

Ra Present Kim et al. (2008)

103 3.454 3.414

106 9.343 9.39

Fig. 2. Comparison of the present solution with the previous work by Kim et al. (2008) for different
Rayleigh numbers at Pr = 0.7
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3. Physical model and boundary conditions

The computational domain in the present investigation consists of a hot inner circular and a cold
outer square cylinder. The working fluid within the annulus is air with Pr = 0.7. Figure 3 shows
different cases considered in this investigation. Figures 3a and 3b depict the annulus with two
horizontal and vertical fins. In other cases, the numbers of radial fins are 4, 6 and 8, respectively.
Temperature of the fins in all cases is equal to the hot inner cylinder.

Fig. 3. A scheme the considered problem with various numbers of radial fins

4. Results and discussion

The LBM method is implemented to obtain the heat and flow distribution inside the computa-
tional domain. The calculations are carried out for a constant Prandtl number (Pr = 0.7). The
Rayleigh number varies from 103 to 106. The local Nusselt number Nuloc over each surface is
defined as

Nuloc = −
∂θ

∂n

∣∣
wall

(4.1)

where n denotes the external unit normal to the wall surface. The thermal heat transfer to or
from the walls is characterized by the average Nusselt number Nuave

Nuave =
1

W

W∫

0

Nuloc ds (4.2)

Figure 4 shows the streamlines and isotherm for annulus with two horizontal fins. For low Ray-
leigh numbers (Ra = 103, 104), the isotherms are uniformly distributed between the inner and
outer cylinders. In addition, the isotherms take shape of the surfaces, which is characteristic for
the conduction dominant regime. With an increase in the Rayleigh number up to 105 gradually, a
thermal plume appears over the hot circular cylinder, which shows that the convective heat trans-
fer mode becomes comparable to the conduction. For higher Rayleigh numbers (Ra = 105, 106),
the isotherms are denser beneath the cylinder, which results in a higher temperature gradient
at this area. The streamlines show that the existence of the horizontal fin leads to the same flow
pattern at different Rayleigh numbers. For all Ra, two pair vortices formed inside the cavity; as
the Rayleigh number increases, the center of these vortices moves upwards and the size of the
two lower vortices decreases considerably.
The local Nusselt number profiles over the inner and outer cylinders are shown in Figs. 5a

and 5b. Figure 5a indicates that the maximum Nusselt number occurs at the poin A, where the
thermal plume strongly impinges the cold top wall, and then it decreases as we move towards
the point B. As we move from the point B to S, the local Nusselt number again enhances,
because hot the fluid could approach to the vicinity of the could surface. Moving towards the
point C, again the local Nusselt diminishes, and by passing this point, the profiles gradually
enhance. It should be noted that with an increase in the Rayleigh number, the local Nusselt
number decreases over the bottom cold wall (C-D), due to the point that in this region the
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Fig. 4. Streamlines and isotherms two horizontal fins arrangement, and Ra = 103-106

hot surface located over the cold one, hence the increase in the Rayleigh number confines the
isotherms to the vicinity of the upper hot surface and leads to a smaller value of the local Nusselt
number. Variation of the local Nusselt number over the surface of the hot cylinder is depicted
in Fig. 5b. As seen, the value of Nuloc is small above the inner cylinder, where the existence
of thermal plume causes a thicker thermal boundary layer. As we approach to the radial fin,
Nuloc decreases and then increases, and reaches to its maximum value at φ = 180

◦.

Fig. 5. Local Nusselt profiles for the two-fin horizontal arrangement over the (a) cold outer cylinder and
(b) hot inner circular cylinder at various Rayleigh numbers

Figure 6 shows the isotherms and streamlines for the two-fin vertical arrangement. The iso-
therms are nearly the same as those of horizontal arrangement, except for that the temperature
gradient beneath the hot cylinder is more distributed because the fins do not suppress the fluid
flow. The streamlines show that at low Rayleigh numbers, two pair vortices exist inside the enc-
losure. As the Rayleigh increases, the size of two lower vortices decrease gradually, and finally
at Ra = 106, only the two upper vortices remain within the enclosure.

Figures 7a and 7b depict the local Nusselt number profiles for the two-fin vertical arrange-
ment. The variation of the local Nusselt number over the outer cylinder is nearly the same as
those of the two-fin horizontal arrangement. Figure 7b demonstrates that Nuloc over the inner
cylinder enhances with an increase in the tangential angle and reaches its maximum value at
the lower half of the circular cylinder.
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Fig. 6. Streamlines and isotherms for the two-fin vertical arrangement and Ra = 103-106

Fig. 7. Local Nusselt profiles for the two-fin vertical arrangement over the (a) cold outer cylinder and
(b) hot inner circular cylinder at various Rayleigh numbers

The isotherms and streamlines for the four-fin arrangement are shown in Fig. 8. The iso-
therms show that as the Rayleigh number increases, the convection heat transfer mechanism
becomes much more pronounced, and a thermal plume forms over the hot inner cylinder. The
flow pattern for this case is similar to that of the two horizontal fine arrangements. The stream-
lines depict that for all Rayleigh numbers four eddies exist inside the cavity. With an increase
in the Rayleigh number, the size of lower vortices decreases considerably while the size of upper
ones remains nearly constant.

The local Nusselt number profiles (Figs. 9a and 9b) show that the local Nusselt number over
the hot surface has two local maximum values; the first one near φ = 45◦ and the other one at
φ = 135◦.

Figure 10 depicts the isotherms and streamlines for the six-fin arrangement for Ra = 103-106.
As the Rayleigh number increases to Ra = 105, a thermal plume starts to form above the hot
circular cylinder, which is similar to the previous cases. The isotherms for Ra = 106 demonstrate
that at this Rayleigh number, the temperature distribution pattern is different from those of
previous cases. Two plumes form above the two-side radial fins at the upper part of enclosure
which impinges the hot fluid to the upper wall; the cold returning fluid from the upper wall
also forms a reverse thermal plume at the middle of the enclosure. The streamlines show the
existence of three pairs of vortices for Ra ¬ 105 inside the enclosure. At Ra = 106 the fluid flow
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Fig. 8. Streamlines and isotherms for the four-fin arrangement and Ra = 103-106

Fig. 9. Local Nusselt profiles for the four-fin horizontal arrangement over the (a) cold outer cylinder and
(b) hot inner circular cylinder at various Rayleigh numbers

Fig. 10. Streamlines and isotherms for the six-fin arrangement and Ra = 103-106
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is characterized by two pairs of vortices inside the cavity; a pair of vortices near the side walls of
the enclosure and the other pair above the hot circular cylinder. The streamlines also indicate
the existence of small eddies at the top of the hot cylinder in the area confined with radial fins.

The local Nusselt number profile over the hot inner and cold outer cylinders are shown in
Fig. 11. As seen in Fig. 11a, for Ra = 106, the local Nusselt number experiences a local minimum
value; it is due to the existence of the reverse thermal plume which makes the temperature
gradient over the cold surface decrease at the point A. The figure also shows that the value
of Nuloc is higher between points B and C at Ra = 10

6 because of the formation of two thermal
plumes near the side walls. The local Nusselt profile over the inner cylinders shows three local
maximum. Moreover, the value of these local maximum numbers is considerably less than those
of the two- and four-fin arrangements. This decrement occurs because the radial fins over the
inner cylinder confine the hot fluid near the inner cylinder which results in a less temperature
gradient and the Nusselt number in this area. The temperature contours and streamlines for
the eight-fin arrangement is shown in Fig. 12. It can be seen that the temperature distribution
characteristic for this case is the same as that of the six-fin arrangement for various Rayleigh
numbers. The streamlines show that two-pair vortices exist inside the cavity at low Rayleigh
numbers i.e. Ra = 103, 104. With an increase in the Rayleigh number, the secondary vortices
form above the inner cylinder and between the radial fins in this region.

Fig. 11. Local Nusselt profiles for the six-fin horizontal arrangement over the (a) cold outer cylinder
(b) hot inner circular cylinder at various Rayleigh numbers

Fig. 12. Streamlines and isotherms for the eight-fin arrangement and Ra = 103-106
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Figure 13 shows that the local Nusselt number profiles over the inner and outer cylinders are
the same as those of the six-fin arrangement except the number of local maximum value over
the hot inner cylinder.

Fig. 13. Local Nusselt profiles for the eight-fin horizontal arrangement over the (a) cold outer cylinder
and (b) hot inner circular cylinder at various Rayleigh numbers

The influence of the Rayleigh number and fin arrangement on heat transfer has been more
highlighted in Fig. 14. It is observed that the overall heat transfer drastically depends on the
arrangement of fins, and the average Nusselt number decreases with rise of the number of fins.
This is because of when the fin arrangement changes, the number of fins over the inner cylinders
is increased, so it decreases fluid convection. It is also seen that the effect of fins decreases when
the Rayleigh number increases. This means that at higher Rayleigh numbers, the heat transfer
rate is more dependent on the number of fins over the inner cylinder.

Fig. 14. Variation of the average Nusselt number over the inner cylinders for various arrangements
and numbers of radial fins

5. Conclusion

The lattice Boltzmann method is used to investigate the effects of the number and arrangement
of radial fins on laminar natural convection between horizontal circular and square cylinders in
this study. The results are depicted in terms of the local and average Nusselt profiles over the
walls and the inner cylinders. The temperature and streamline contours are also depicted in this
study. The obtained results clearly indicate that the number and arrangement of radial fins over
the inner cylinder as well as the Rayleigh number have remarkable effects on the streamlines,
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temperature contours and vortex formation in the enclosure. Besides, the temperature contour
and streamlines for the six-fin and eight-fin arrangements showed different behavior from those of
the two-fin and four-fin arrangements. The results show that as the Rayleigh number increases,
the Nusselt number is also increased. However, over the inner cylinder, the averaged Nusselt
number is decreased as the number of fins increases. Note that the maximum of this averaged
Nusselt number is for the case where no fins are used.
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